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Abstract--The natural convection flows from the wail and free plumes above a horizontal heat line source 
in a non-Darcian porous medium are investigated. The non-Darcian convective, boundary viscous and 
inertia effects are all considered. The results indicate t 
velocities and increase the maximum temperatures, an tl 

at the, non-Darcian effects decrease the peak 
dthrekifi the temperature boundary layer. In 

addition, the wall plume has a lower peak velocity and a higheti maximum temperature than the cor- 
responding free plume. Moreover, solutions by using local similarity and local non-similarity methods 

overestimate the maximum temperature and peak velocity for both wall and free plume cases. 

1. INTRODUCTION 

THE steady buoyancy-induced flow arising from ther- 
mal energy sources is commonly referred to as a natu- 
ral convection plume. Buoyancy sources, such as fires, 
electronic components, electrical heater and heated 
bodies, give rise to wake and develop into thermal 
plumes downstream. Among such plumes, two general 
types may be identified-the free plume and the wall 
plume. The free plume is typified by the buoyant flow 
above a heated horizontal wire or cylinder. A typical 
wall plume is the flow resulting from a line source of 
heat along the base of an adiabatic vertical plate. The 
free and wall plumes from a line or a point thermal 
source in a viscous fluid have been studied extensively 
(for example, refs. [l-5], and the references cited 
therein). However, the analogous problems of free 
and wall plumes in a saturated porous medium have 
received rather less attention. The applications include 
the natural convection cooling of buried electrical 
cables, the disposal of nuclear wastes, hot-wire 
anemometry, volcanic eruption, etc. 

Wooding [6] developed a boundary-layer theory 
with an exact solution for steady-state natural con- 
vection from a line or point source in an infinite Dar- 
cian saturated porous medium (free plume). Lai [7] 
m-examined the same p,roblem and obtained a closed 
form solution for a point source. Bejan [8] used a 
pertubation analysis to study the transient and steady 
natural convection from a point heat source at low 
Rayleigh number in a Darcian porous medium of 
infinite extent. The steady point heat sources at low 
and high Rayleigh numbers in an unbounded Darcian 
porous medium were investigated by Hickox and 
Watts [9] and Hickox [IO]. Afzal and Salam [Ill 

*Author to whom correspondence should be addressed. 

studied the natural convection arising from a point 
source in a Darcian porous medium bounded by an 
adiabatic conical surface. The Darcian mixed con- 
vection from a line thermal source imbedded at the 
leading edge of an adiabatic vertical surface (wall 
plume) in a saturated porous medium was numerically 
analyzed by Kumari et al. [12]. However, to the 
authors’ knowledge, the non-Darican effects on the 
natural or mixed convection wall plume from a line 
source have not yet been investigated. 

Coupled heat and mass transfer by natural con- 
vection at low Rayleigh number in an infinite Darcian 
porous medium has been reported by Poulikakos [13] 
for a point source, by Larson and Poulikakos 1141 for 
a line source and by Lai and Kulacki [ 151 for a sphere. 
For a large Rdyleigh number, Lai [16] obtained the 
similarity solution for a line source, and the closed 
form solutions are presented for the special case of 
Lewis number equal to 1. 

All of the works mentioned above are based on the 
Darcy formulation. At a high Rayleigh number or in 
a high porosity medium, there is a departure from 
Darcy’s law and the convective, boundary viscous, 
inertia and thermal dispersion effects not included in 
the Darcy model may become significant. Ingham [ 171 
obtained an exact solution for the free convection 
from a line source in an unbounded non-Darican 
porous medium when only the inertia effect is 
considered, and he shows that the non-Darcian flow 
would produce a much more peaked temperature pro- 
file than that predicted by the Darcian flow. Local 
non-similarity solutions are reported by Lai [18] for 
natural convection from a line source to examine the 
inertia and thermal dispersion effects. It has been 
found that the inertial effect tends to reduce the flow 
and temperature profile while the thermal dispersion 
effect has enhanced this influence further. Cheng and 
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NOMENCLATURE 

inertia coefficient Greek symbols 
specific heat of fluid a, effective thermal diffusivity 
Darcy number, K/x2 B coefficient of thermal expansion 
dimensionless stream function I- dimensionless inertia parameter, 

aflag K”‘C*g/IQ/kva, 
gravitational acceleration c: porosity 

aejag t parameter, l/(DaX Ra:15) = 
effective conductivity (kcr,vx2/g/3Q)2,‘5/K 
permeability 
Prandtl number, v/a, ii 

pseudo similarity variable, y(Ra,)’ ‘ix 
dimensionless temperature, 

strength of thermal line source per unit (Ra,)‘%%,.r)- T,)klQ 
length p fluid absolute dynamic viscosity 
local Rayleigh number, V fluid kinematic viscosity 

gBQx31kw P fluid density 
temperature Y stream function. 
volume averaged velocity in the X, J‘ 
directions Subscript 
axial and normal coordinates. co condition at the free stream. 

Zheng [19] used the local similarity method to study 
the mixed convection plume above a horizontal line 
source. The inertia and thermal dispersion effects are 
included. It is noted that numerical methods used in 
refs. [18, 191 such as local similarity method and local 
non-similarity method have their own drawbacks as 
the derivatives of certain terms are discarded in order 
to reduce the partial differential equations to ordinary 
differential equations. This has motivated the present 
investigati% The object is to give more accurate 
numerical solutions of the wall and free plumes due 
to line heat sources in a non-Darican porous medium. 
The governing partial differential equations are solved 
by using a suitable variable transformation and 
employ,ing an efficient finite-difference Keller’s Box 
method [20] incorporated with a numerical algorithm 
developed by Yu et al.1211 to deal with the integral 
boundary condition. The non-Darcian effects on the 
temperature and velocity fields will be examined in 
detail. In addition, both the local similarity and local 
non-similarity solutions are also presented in order to 
check the accuracy of these two approximate methods 
for the present problem. 

2. MATHEMATICAL ANALYSIS 

We consider the free convection from a horizontal 
line heat source, generating heat at a rate per unit 
length of Q, which is embedded in an unbounded 
porous medium (free plume) or embedded at the lead- 
ing edge of an adiabatic vertical plate placed in a 
saturated porous medium (wall plume). The physical 
model and coordinate system for the wall and free 
plumes are illustrated in Fig. la and lb, respectively. 
In order to study transport through non-Darcian 
media, the original Darcy model is improved by 
including convective, boundary viscous and inertia 

effects. In addition, we assume that : (1) the convective 
fluid and porous medium are in local thermal equi- 
librium ; (2) the properties of the fluid except for the 
density term that is associated with the body force are 
constant ; (3) variable porosity and thermal dispersion 
effects are neglected; and (4) the Boussinesq and 
boundary layer approximations are employed. Then, 
the governing equations become : 

@+&Lo, 
ax ay (1) 

; (US +$) = /‘x&T-T,) 

-32 
-!b~_pcu’+~l.ll, 

E ag (2) 

(3) 

where K is the permeability of the porous medium, C 
is the transport property related to the inertia effect, a 
is porosity and c(, is the effective thermal diffusivity. 
The other symbols are defined in the Nomenclature. 

The boundary conditions for equations (l)-(3) are : 
sp 

(i) wall plume case : 

x=0 y>O u=O T=T, 

ar 
x>o y=o u=o c=o -=o 

ay 

y=a u=O T=T. 
x> 

(ii) free plume case : 

x= 0 y >“O u=O T=T z 

(4) 
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heat source Q 
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(a) Wall plmne case @) ‘Pree plume case 

FIG. I. The physical model and coordinate system. 

x>o y=o -_=o v=o aT,o au 
ay ay 

y=scj u=O T=T,. (5) 

It is noted that the major difference between the 
free plume and wall plume cases is the use of the no- 
slip boundary condition at the wall for a wall plume, 
as opposed to a plane of symmetry for a free plume. 
According to the principle of conservation of energy, 
the conservation of energy requires that, at any pos- 
ition x > 0, the convective energy is equal to the 
energy released by the line heat source, Q. Thus : 

Q=K, = 
s 

u(T- T, 1 dy for wall plume, 
0 

s 
T’ Q = pC, u(T-T,)d,r forfreeplume. (6) 
-r 

We introduce the following transformations : 

,f’(i’, yI) = y(x,JJ) 
a,(Ra,)’ 5 

Q(L rl) = 
TCGY)-T~ (Rr,,), 5, 

Q,k 

(7) 

where Da, = K/x2 is the local Darcy number. The 
parameter 5 characterizes the source strength (Q), the 
distance along the plate from the leading edge (x) and 
the permeability (K) of the porous medium. As x 
increases or Q, K decrease, the value of t(x) increases. 
It is noted that Darcy’s law corresponds to the case 
of 5 + x (i.e. K + 0) with r = 0, for which the ana- 
lytical solutions for the wall and free plumes can be 
obtained [6, 121. For Darcy’s law, the closed form 
solutions of the wall and free plumes in terms of the 
variables of the present study are as follows : 

where Ra, = g~Qx3/kcc,v is the local Rayleigh number 
and Y is the stream function which automatically 
satisfies continuity equation (1). The coordinate < is 

(i) wall plume case : 

so chosen that x does not appear explicitly in either the - J“ = 0.535 (11) 
transformed governing equations or the transformed 

2’3 sech’ ($;“‘q) 

boundary conditions. 

%“+ &l’%+1.%‘) = it@! -%J$); (9) 

where primes denote partial differentiation with 
respect to ‘I, Pr = v/cc, is the Prandtl number, 
f = K’ ZCZg~Q/kv~e is the dimensionless inertia par- 
ameter expressing the relative importance of the iner- 
tia effect. t is found to have the expression : 

Substituting equation (7) into equations (l)-(3), we 
obtain : 

9 = 0.5$<“’ sech* 
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(ii) free plume case : 

The transformed boundary conditions are : 

(i) wall plume case : 

.f(LO) = f’(4,O) = @‘(LO) = 0 

.f’(5> a> = wt, co) = 0 

I 
=,fVdq = 1 ; 
0 

(ii) free plume case : 

.NL 0) = .f”(k 01 = O’(<,O) = 0 

f’(5, ‘cl = Q(L co) = 0 

s 
xf’@dtj = ;. 
Cl 

(12) 

(13) 

(14) 

Because the condition e(<,co) = 0 is satisfied auto- 
matically by using the other conditions, the other five 
independent conditions in equations (13) and (14) are 
sufficient for solving the fifth-order partial differential 
governing equations (8) and (9). In terms of new vari- 
ables, it can be shown that the dimensional velocity 
components and temperature are given by : 

T-T z 5- ““e(g,q). (15) 

3. NUMERICAL METHOD 

Three different numerical methods-local simi- 
larity, local non-similarity and Keller’s Box finite- 
difference methods-were used in the present study. 
Equations (8) and (9) associated with the boundary 
conditions (13) and (14) were solved by an efficient 
and accurate implicit finite-difference method similar 
to that described in Cebici and Bradshaw [20]. To 
begin with, the partial differential equations are first 
converted into a system of first-order equations, then 
these first-order equations are expressed in finite 
differ&e forms in terms of center difference. Denot- 
ing the mesh points in the 5-q plane by 5, and ‘I/, where 
i = O,l,. ..,Mandj=O,l,..., N,thisresultsinaset 
of non-linear difference equations for the unknowns 
at 4, in terms of their values at t,_ 1. The resulting non- 
linear finite difference equations are then solved by 
Newton’s iterative method. The boundary layer equa- 

tions are thus solved step by step by taking the con- 
verged solution at 5 = t,_ , . 

We adopted the numerical algorithm [21] to deal 
with the integral constrains, equations (13) and (14). 
For the wall plume, we first drop the boundary con- 
ditionsf’(&O) = 0 and f3’(5,0) = 0, and assume an- 
other two presupposed boundary conditions f “(5, 0) = s 
and 0(&O) = t, where s and t are the undetermined 
non-zero constants. The refined values of s and t can 
be estimated by Newton-Raphson method associated 
with two sets of variation equations which were 
derived by taking the derivatives of the finite-differ- 
ence equations of equations (8) and (9) and their 
boundary condition (13) with respect to s and t. The 
two sets of variation equations, due to retaining the 
tridiagonal block structure of the matrix, can be 
solved by using Keller’s scheme. The two dropped 
boundary conditions together with the integral 
condition, equation (13), are treated as constraints. 
The iterations for adjusting the presupposed bound- 
ary conditions are repeated until the following 
criterion, which is the sum of squares of the dis- 
crepancies for the constrained conditions, is satisfied : 

If ‘(5>0)1’ + [@(L ON’ 

+[j:,f’@+l] < error (say, lo-‘). 

For free plume case, similar procedures are 
followed, except that the dropped boundary con- 
ditions ,f ‘({, 0) = 0 and 0’(5,0) = 0 in the wall plume 
case are changed to f “(4.0) = 0 and f)‘(l, 0) = 0 and 
two presupposed boundary conditions f ‘(r, 0) = s 
and Q(l, 0) = t are assumed. 

In the calculations, the values of q,, = 20 were 
found to be sufficiently accurate for Ifa 1 < lo-‘. Uni- 
form step sizes of Ar) = 0.05 in the q-direction and 
A5 = 0.1 in the c-direction were used. 

For the local similarity method, this problem con- 
sists of solving only equations (8) and (9) when the 
right-hand sides of these equations are replaced by 
zero. For the local non-similarity method, the gov- 
erning equations at the second level of approximation 
are given by : 

+ &(G”-GC”), (16) 

H”+j(3fH’-f’H)+f(3G’0+7G0’) 

= ;~(G’H- H’G), (17) 

where G = df/a< and H = deja< are the auxiliary func- 
tions. The boundaryrconditions for the above two 
differential equations are : 
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Table 1. Three different solid-fluid combinations and heat source strength used in this study 
with F’r = 5.4 

Fluid 
d 

Solid (mm) F: 

water glass 3 0.375 
water glass 6 0.4 
water glass 15 0.453 

(i) wall plume case : 

G(&O) = G'(&O) = X(5,0) = 0 
G'(&oo) = 0 

s 
m(G'O+f'H) dq = 0; (18) 
0 

(ii) free plume case : 

G(<,O) = G"(&O) = H/(&O) = 0 

G'(&m) = 0 

s 
m(G’B+f’H)dq = 0. (19) 
0 

A sixth-order variable step size Runge-Kutta inte- 
gration routine in conjunction with the Newton- 
Raphson iterative scheme is used here to solve equa- 
tions (8) and (9) for the local similarity solution, and 
equations (8) and (9) and (16) and (17) for the local 
non-similarity solution. The q, is decreased gradually 
with increasing 5 and ranged from I, = 20 for 5 = 0 
to VP = 5 for 5 = 10. 

4. RESULTS AND DISCUSSIONS 

Three different solid-fluid combinations listed in 
Table 1 are used in this study. The values of per- 
meability K and inertia coefficient C are calculated by 

3 
x 

Finite difference solution 
Darcy model [ 121 

Pr = 5.4 I- = 160 

‘0 

B 0.4 0.6 

z 0.5 
0.3 

0.4 

0.2 0.3 

0.2 
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0.1 

0 10 20 30 40 5o” 

. 

?5o.5 
FIG. 2. The tangential velocity and temperature profiles at 
i’ = 1, 5 and 10 with Pr = 5.4. I- = 160 for the wall nlume. 

0 10 20 3b 40 50 

15°.5 

FIG. 3. The tangential velocity and temperature profiles at 
5 = 1, 5 and 10 with Pr = 5.4, r = 160 for the free plume 

200 8 x IO-9 6913 0.6 
200 4x 10-s 2836 6 
200 4.6 x IO-’ 686 160 

employing the Ergun model [22], K = 
d*E’/[150(1 -E)*], c = 1.75(1 -&)/&%. 

Figures 2 and 3 show the finite difference solutions 
of the velocity and temperature profiles across the 
boundary layer at different values of 5 with Pr = 5.4, 
I- = 160 for the wall plume and free plume, respec- 
tively,. T& v$bcity profiles are referred to the left and 
lower ‘ax&, while the temperature profiles are referred 
to the right and upper axes. The dashed lines denote 
the analytical solutions based on the Darcy mode1 
(t = co and I- = 0) [6, 121. One can see that the vel- 
ocity and temperature profiles for the wall and free 
plumes look similar except for the velocity near q = 0. 
For a free plume, because of the absence of wall at 
q = 0, the velocity should be symmetrical with x-axis. 
Thus, the maximum velocity occurs at 9 = 0, while, 
for a wall plume, at the wall 9 = 0 the velocity is zero 
because of the no-slip condition. It is also seen that the 
tangential peak velocity and maximum temperature 
decrease with increasing values of c ; that is, both the 
tangential peak velocity and maximum temperature 
decrease with the increasing downstream distance x 
for given source strength Q and permeability K, or 

decrease with the decreasing Q for fixed x and K. In 

addition, the temperature boundary layer thicknesses 
for the wall and free plumes increase as 5 increases. It 
is also observed that Darcy’s solutions underpredict 
the maximum temperatures for the wall and free 

tiO.5 

50 40 30 20 10 0 
o.so+ ’ 8 ’ 1 3 1 * 1 * ! 0.60 
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- - - Darcy model [6] 
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__ Finite difference solution 
’ - - - Darcy model [121 

o,70 

0.61 

r = 0.6, 6, 160 

,// 

FIG. 4. The tangential velocity and temperature profiles for 
different values of r = 0.6. 6. 160 at t = 2 with Pr = 5.4 for 

the wall plume: 

q5°.5 
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FIG. 5. The tangential velocity and temperature profiles for 
different values of r = 0.6, 6, 160 at 5 = 2 with Pr = 5.4 for 

the free plume. 

plumes and, as would be expected, Darcy’s law is only 
valid for large values of 5. 

Figures 4 and 5 show the finite difference solutions 
of the inertia effect (I- = 0.6, 6, 160) on the tangential 
velocity and temperature profiles at < = 2 for the wall 
plume and free plume, respectively. The dash lines 
represent the Darcy model [6, 121. It is seen that the 
inertia effect decreases the peak velocity and thicken 
the temperature boundary layer thickness. This is 
because the form drag of the porous medium is 
increased when the inertia effect is included. 

Figures 6 and 7 shows the comparisons of the tan- 
gential @ocity and temperature profiles, respectively, 
for the wall and free plumes calculated from the finite 
difference Keller’s Box method and Darcy flow model 
[6, 121 at 5 = 2.0 with I- = 0 (combined convective 
and boundary viscous effects, here called two effects) 
and I- = 160 (combined convective, boundary viscous 
and inertia effects, here called three effects). The solid 

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 

FIG. 6. Comparison of tangential velocity profiles for the 
wall and free plumes at 5 = 2 with r = 0 and 160. 

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 2 

q5°.5 

.O 

FIG. 7. Comparison of temperature profiles for the wall and 
free plumes at 5 = 2 with r = 0 and 160. 

lines denote the wall plume solutions, while the 
dashed lines represent those for a free plume. In order 
to provide a common basis of comparison, the free 
plume results were corrected so that Q represented the 
vertical flow of energy in the half-width of the free 
plume. It is noted that the Darcian solutions are the 
same for the wall and free plumes if the wall and the 
half-width of the free plumes have the same strength 
of heat source. It is seen that the wall plume has a 
lower peak velocity, a higher maximum temperature 
and a thicker temperature boundary layer thickness 
than the corresponding free plume. These differences 
are due to greater wall friction effect for a wall plume. 
Comparing the two effects (I- = 0) with the tbge 
effects (r = l60), because of larger differences 
between curves of I- = 0 and I-’ = 160 for a free plume 
than for a wall plume, it is found that the inertia 
effect is more significant for the free plume. Moreover, 
compared with the solutions of the Darcy model with 
those of two effects (I- = 0) for the wall and free 
plumes, one can see that boundary and convective 
effects are more important for a wall plume than for 
a free plume. 

The maximum tempF@ure (i.e. wall temperature 
for wall plume or center temperature for free plume) 
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A Finite difference 

F! 
Local nonsimilarity 
Local similarity 

---- Darcy model [ 121 

0 1 2 3 4 5 6 7 8 9 10 

E; 

(a) Wall plume 

0 1 2 3 4 5 6 7 8 9 10 

5 

(b) Free plume 

FIG. 8. The wall temperature and center temperature for the 
wall and free plumes over a wide range of 5 with Pr = 5.4 

andr= 160. 

and peak velocity over a wide range of < are shown in 
Figs. 8 and 9, respectively, for f = 160. The local 
similarity, local non-similarity, finite difference and 
Darcy model [6, 121 solutions are presented. These 
solutions are also listed in Tables 2 and 3 for future 
reference. It is seen that both the local similarity and 
non-similarity methods overestimate the maximum 
temperature and peak velocity, while the Darcy model 
underestimates the maximum temperature and over- 
estimates the peak velocity. As expected, the local 
non-similarity method yields more accurate results 
than those from the local similarity method. However, 
the agreement between the local non-similarity and 
Keller’s Box methods of solution deteriorates when ir 
increases. For example, from Table 2 for the 
maximum temperature of the wall plume, the error 
for the local non-similarity method is 1% at 5 = 0.2 
and 56.1% at t = 10, while for the local similarity 
method it is 4.8% at t = 0.2 and 125% at [ = 10. For 

1.50- 

I A Finite difference 
1.25- ’ 

: 
Local nonsimilarity 

I Local similarity 
I ---- 

l.OO- \ 
Darcy model [12] 

5 \ 

?.Ln 

z 

0.75- ‘\ 

\ 
t, \ 

0.50- . . 
--__ C 

--__ 

0.25 - c 

A B 

(a) Wall plume 

0.25 - C 

----_ 

A 

I + I, I I II I I I a I ’ I b 1 ’ I ’ 

0 1 2 3 4 5 6 7 8 9 10 

5 

(b) Free plume 

FIG. 9. The peak velocity for the wall and free plumes OLU 
a wide range of l with Pr = 5.4 and r = 160. 

to be satisfactory for < < 2 (wall plume) and for < < I 
(free plume), respectively, while the local similarity 
method is satisfactory only for < < 0.5 (wall plume) 
and for i_ d 0.2 (free plume). 

5. CONCLUSION 

The numerical solutions for the natural convec- 
tion flow from the wall and free plume above a hori- 
zontal heat line source in a non-Darcian porous 
medium are performed. A new parameter 
< = l/(Da, Rat ‘) = (ksc,v.~~:g~~Q)’ ‘/K which charac- 
teriLes the source strength (Q). the distance along the 
plate from the leading edge (x) and the permeability 
(K) of the porous medium is introduced, and Darcy’s 
law corresponds to the case of 5-m. It is shown 
that the Darcy model underestimates the maximum 
temperature and overestimates the peak velocity. The 

the free plume, the error for the local non-similarity _ numerical results also indicate that both the local simi- 
method is 1.4% at 5 = 0.2 and 86.9% at 5 = 10, while larity and non-similarity methods overpredict the 
for the local similarity method it is 10.2% at 5 = 0.2 maximum temperature and peak velocity. When com- 
and 88.1% at 5 = 10. In summary, for a maximum pared with the Keller’s Box method, for a largest 
error of lo%, the local non-similarity method is found error within lo%, the local non-similarity method is 
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Table 2. Values of 0((, 0) t- 3/4 with various values of 5 at r = 160 calculated based on the Darcy model, local 
similarity and local non-similarity and Keller’s Box methods for the wall and free plumes, respectively. The percent 

errors of the former three approximate methods compared with the Keller’s BOX are aiso shown. 

Darcy 
5 s(s.o)* 5-j’” % error 
-.. 

0.2 1.4103 53.1 
0.5 0.9624 40.0 
1.0 0.7208 30.7 
2.0 0.5399 23.2 
3.0 0.4559 19.8 
5.0 0.3684 16.6 
7.0 0.3202 14.8 
8.0 0.3028 14.3 

10.0 0.2760 13.3 
_~__ 

Wall plume 
Local similarity Local non-similarity Keller’s Box 

t9([, 0)* Cm”’ % error Q(r, 0)* l-“” % error fJ(& 0) 5m3’4 

3.1489 4.8 3.0319 1.0 3.0021 
1.7571 9.6 1.6409 2.4 1.6031 
1.1790 13.4 1.0930 5.2 I .0393 
0.8180 16.4 0.763 1 8.6 0.7027 
0.6694 17.7 0.6241 9.8 0.5687 
0.5539 25.5 0.4930 11.7 0.4415 
0.5547 47.5 0.4659 23.9 0.3760 
0.5929 67.9 0.4708 33.3 0.3532 
0.7158 125 0.4970 56.1 0.3183 

Darcy 
5 (I((, o)* t-3:4 % error 

Free plume 
Local similarity Local non-similarity Keller’s Box 

B(r’, o)* 5-3’” % error 0(<, 0)* <m3’4 % error Q(k 0) r-3’4 

0.2 0.8882 40.7 1.6525 10.2 1.5202 1.4 1.4991 
0.5 0.6062 27.5 0.9708 16.1 0.8809 5.4 0.8361 
1.0 0.4540 20.3 0.6771 18.9 0.6277 10.2 0.5694 
2.0 0.3400 15.6 0.4838 20.1 0.4611 14.4 0.4029 
3.0 0.2871 13.6 0.4024 21.1 0.3803 14.4 0.3324 
5.0 0.2321 11.6 0.3335 30.0 0.3067 16.7 0.2627 
7.0 0.200s 11.0 0.3218 42.8 0.3106 37.8 0.2254 
8.0 0.1908 10.1 0.3273 54.2 0.3205 51.0 0.2123 

10.0 0.1738 9.5 0.3613 88.1 0.3591 86.9 0.1921 

Table 3. Values of fk..(t, q) c1j4 and f’(l,O) 5”” with various values of 5 at f = 160 calculated based on the Darcy model, 
local similarity and local non-similarity and Keller’s Box methods for the wall and free plumes, respectively. The percent 

errors of the former three approximate methods compared with the Keller’s Box are also shown 

T 
Wall plume 

Darcy Local similarity Local non-similarity Keller’s Box 
5 f’rnrx(5, q) 5’:* % error .fkX(i;, rl) 5”” % error Sk,X(T> rl) P4 % error f6..(C, ?) P4 

1 .o 0.7208 101.1 0.3615 0.9 0.3642 1.6 0.3583 
2.0 0.5399 70.6 0.3312 4.6 0.3289 4.0 0.3164 
3.OP 0.4559 58.5 0.3076 6.9 0.3025 5.1 0.2877 
4.0 0.4043 51.4 0.2926 9.5 0.2825 5.7 0.2671 
5.0 0.3684 46.7 0.2852 13.5 0.2708 7.8 0.2512 
6.0 0.3414 = 43.1 0.2850 19.5 0.2657 11.4 0.2385 
8.0 0.3028 38.3 0.3065 40.0 0.2701 23.3 0.2190 

10.0 0.2760 34.9 0.3378 65.1 0.2822 37.9 0.2046 

Free plume 
Darcy Local similarity Local non-similarity Keller’s Box 

r J”(<>o) P4 % error f’(5> 0) P4 % error f’(4,O) P % error f’(5,O) P4 

1.0 0.4540 47.3 0.3239 5.1 0.3252 5.5 0.3083 
2.0 0.3400 36.9 0.2738 10.2 0.2721 9.5 0.2484 
3.0 0.2871 32.1 0.2449 14.5 0.2393 10.1 0.2173 
4.0 0.2547 29.2 0.2269 15.1 0.2167 9.8 0.1971 
5.0 0.2321 27.0 0.2165 18.5 0.2056 12.5 0.1827 
6.0 0.2151 25.3 0.2123 23.7 0.2039 18.8 0.1716 
8.0 0.1908 22.9 0.2150 38.5 0.2131 37.3 0.1552 

10.0 0.1738 21.2 0.2327 62.3 0.2306 62.1 0.1434 

satisfactory for 5 < 2 for a wall plume and for l < 1 having the same vertical flow of energy in its half- 
for a free plume, and the local similarity method is width, it is shown that the wall plume has a lower peak 
valid only for 5 < 0.5 for a wall plume and for 5 < 0.2 velocity and a higherrnaximum temperature than the 
for a free plume. For the wall plume and free plume corresponding free plume. 
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